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SUMMARY

The purpose of this study was to generate a model for use in determining the
feasibility of detecting radar signals beyond the normal radar horizon. The
mechanisms to be considered were tropospheric ducting and earth diffraction. Until
recently, models of tropospheric ducts assumed that the ducts were horizontally
homogeneous, which led to significant errors when compared with experimental results.
Under this study, ducts are treated as laterally nonuniform stratifications in the
lower atmosphere.

A Green's function approach is used to derive an expression for the field
inside a laterally inhomogeneous duct. The laterally inhomogeneous duct is assumed
to have a single step discontinuity. The formulation for the field, convergence
criteria for the step size and the number of modes needed for a solution are Jiscussed.
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SECTION I
INTRODUCTION

A solution to a very "sticky" problem is given, using the Green's function
method. The extension of the solution for propagation in a uniform medium to a
medium composed of steps, to represent the slow variation in refractive index with
distance along the direction of propagation, allows a solution for propagation in a
laterally inhomogeneous medium. The coupling between normal modes in each region is
easily separated out of the solution in the present formulation. The theory could be
used to study the problem of propagation of underwater sound waves in shallow water
with slowly varying depth. ! The problem of propagation in a laterally inhomo-

geneous duct was investigated by Baha\r'(2 using an iterative solution to Maxwell's
equations directly.




SECTION II
ANALYSIS

The geometry of the propagation problem is shown in Figure 1. The term duct

refers to the concept of the trapping of modes and the resulting propagation over
long distances.
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Figure 1. Geometry for single step discontinuity in a tropospheric duct.
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Our approach will be to find the Green's function for the bounded waveguide
cross section in Figure 1. In particular, we will analyze the effect of the step
size, (az—a]), and the refractive index contrast, ny-ny.

The electric and magnetic fields will satisfy the two-dimensional, time-
harmonic, Helmholtz equation

2

8(r-r )8(¢-9_)
193 3G 1 3G 2 S S
— = (r22) + 5=+ kG = , (1)
r ar or r,2 3¢2 ,
g r<w
0 < ¢ <2nm

where (rs,¢s) and (r,¢) are the source and observation coordinates respectively,
k is the wave number, and the time dependence is e'1Wt. Considering regions (I)

and (II) separately, G must meet the periodicity requirement, and we have

[+¢]

2 §(r-r_)
19 oG 1 3°G 2 S
(3 08 2 s Z (-4 -2nm) (2)
r oor ar r2 a¢2 R S

n=-o

We look for solutions to (2) with a singularity at rgsdg ON each "Riemann sheet",
n as

(e, 1) = ) 6 (s ra), vy = (g ¢ 20m)

R Iy ey (2)
r ar r rl a4 ,
g < r<e
-0 < q) < @
The completeness relation is
' - _"_‘_ . .
6,0t 1) = g3 s lrargidlg, (6, 6o (4)

where the contour (counterclockwise) in (4) is selected to enclose all the singu-
larities in the complex A-plane.




If we define

v o= /R, Im(v)>0

1 (5)
dv = — dX
N

then the Green's function 94 on an "infinite" angular transmission line is

1v(¢-¢s-2nn)

L2y _ e
(¢9 ¢ss\) ) = 77y (6)

%
with g |> 0 as |v|>=. Substituting (6) in (4) gives

’ v(¢-¢g-2nm)
,v e dv (7)

1
G (rs 1) = 57

s"\a

with Fourier inversion

o -iv(¢-¢_-2nm)
(Y, rs ,V '.2£~Gw r r';¢,¢s+2nw)e S do. (8)
From (3), 9, satisfies
39 2 s(r-r_)
Lo gl e g - Y g s —F )
r r

With a perfect absorber at |¢-¢S|=n, Figure 1 corresponds to the case n = o for
(7) and (8). Much of the discussion up to this point can be found in the litera-
ture. 3

The field, E(r), in region (II) due to the aperture field in the plane =9, in
Figure (1) is obtained from Green's Theorem after integrating over the cylinder &
at infinity and over the aperture plane $=9, yielding

2
er) = | 9 [e(r) KRN (10)
A r.l a¢l 00 a¢l 3
0

where by analogy with the problem to the left of the aperture




Go(oz) (ror';o,0') = -;;; 7 9,(.2)(r,r';v2)ew(¢_¢') dv, (1)

from which it follows that

BG(Z) 1 S 2. i '
;¢. = §;7-~Z; giz)(r,r';v )e1v(¢'¢ ) v dv . (12)

We now make the parabolic wave equation assumption

of . .
a7 - 1ka] E(r') (13)

Subsituting (12) and (13) into (10) gives

E(r) =/ Tre(r) | o5 giz)(r,r';vz)e“’w'i")v dv,
4 - (14)
0
LR @) 2eiulemst)y
i Ir W15V v

and because we are interested in solutions when v = ka], (14} becomes

(o ¢]

Kay £ . ,
E(r) = % / 9‘;—. (r')/ g)(nz)(r,r';vz)ew(@’(b )dv . (15)

a - 00
0

Now, E(r') is the field in the plane =0, due to the point source at re g neglecting

reflected fields and is given by

on

1 (1)

. , ? iv(e -0, )
E(r') = 5 g, (r'rgvt) ° s

e dv . (16)
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Substituting (16) into (15) gives the solution

Kay 7o g y v, (6 -6)
1 d '
- ol f lr”" fdv] _/de gr ,rs;vf)giz)(r,r ;vg)e e
-0 -0

a ( \ (17)
i -9
e Vo904

(o]

which is easily generalized to 2-step discontinuities as

ka oo ] o© [+ [+
1 dr dr d d
e e[ e ]
a -c0 =00 -0
(18)
-9&1)( ,rs;vf) 952)(r',r",v§) 9&3)(r" r;vg)

vy (d9-0.)  Tv,(dy-07) iva(e,-0.)
o 1Y%71 *s e 272 M o 3VY2 Yo

The Green's function for the source rs in the duct is given by the "broken"

function
T (k) + R0 (ke )1 1D ey 2y < r <
s kr) + Ry ()M ) (kr) -
g(r,rs;vz) = -[Hé])(krs) + Ry(v) Héz)(krs)] » P ST 2y (19)
a() K (k) + R (w) W) (k)1
WD k) + Ry ) HP )] v arg

In (19) Hé]) and HSZ) are Hankel functions of the first and second kind.




Yo

where ay is the height where the refractive index changes from k to ﬁ where

~

k = k(1 - an) (20)

and aO is the radius of the earth and An is the refractive index contrast.
The Green's function if the source is outside the duct is

girorgv?) =f aIIH{Dkr) + Ry(v) H
T (ke) + Ry (0) H
where the height of the duct is now labeled a5, because, as we see in Figure 2,

the integration point for Region II eventually lies outside the duct.
From the jump condition

el _ 99 - -1
ar or 2nrs (22)
r=rs+s r=rs-€
and the use of the following Wronskian
(1)" (2) (1) (2)" _ 4

Hv (krs)Hv (krs) - Hv (krs)Hv (krs) nkrs . (23)
we obtain

alv) = (24)

" 8Ry(v)R, (v)]

and the "resonance" condition; i.e., Rz(v) = R1( v). From the boundary conditions
at r=a; , i.e.,

g(r.rgvd) = glr,rg3v?) (25)
r=a1-e r=a]+e
and
9g = 99
ar or (26)
I"=a]-E l"=a]+E
7




we find

Ry(v) = - [k M (ka HE (k)i WS (RadHET) " (kap)1 7

(V) (v) @7
oL (1) 2 (1),¢ (2)
[kHv (ka])Hv (ka])-k H, (ka1)Hv (ka])]
a "reflection” coefficient at the boundary. Similarly, from the boundary
condition at r=a, i.e.,
ég. = -1
T ikdg (28)
r=a, r=a,
we find
- _ ) (1)
R](v) [Hv (kao) + i6H (kao)] / (29)
(2)' co(2)
[HV (kao) + AgH] (kao)]
where
/-1 , vertical polarization
§ = (30)
vYn-1 , horizontal polarization
and .
- 10
n=e.- o, (31)

where o is the ground conductivity in Siemens/m and € is the relative dielectric
constant. Knowing R1(v), RZ(V) and a(v) allows us to solve for T(v) in (19), again
using the continuity of g at r=a, and we obtain

T(v) = - (i78)[H M (kay) + Ry(wIH{B) (kay)] /

(32)
(M (p
[Rz(V)'R](V)]H\) (ka])-
Similarly, the jump condition for 5 gives
a(v) Ry(v) = (i/8) . (33)

From the boundary condition at r=a,, we find

© —

R B




Ry(v) = -tk KV (ka )WL (kay) + Ry (wIHP) (k)
kKD (ka1 (kay) + Ry (IR (kay) Ty / )
tk 1) (ka ) TH{ ) (kay) + Ry (v) HEZ) (k)
-k HZ) (kap) 0 (kay) + Ry (M) (kap) Ty
and
T(v) = 2K (kay) + Ry(w)H(?) (ka1 / -

{1 (kay) + Ry (M) (kay) 1.

We now turn our concentration to the aperture integration a < r' <= in (17). The

geometry of the problem is given in Figure 2, where we will confine our analysis to

the case where a ) < r  <a; and aj <r <a,.

S 0

N
’l\( ){ﬂ\

a, ” l /Typicol Integration Points, r'
X
r's o — Vo
X
Source A —— — — —— —-Or
“ 11( Observer
(]() (]()

Figure 2. Geometry for aperture integration. Modes in regions (I) and (II)
are vy and Vo respectively.




Using the "broken" functions in (19) and (20) with appropriate interpretations for
the source and observations points (i.e., in the aperture plane the integration
point, r', becomes the observation point, r, in Region (I) while the integration

point, r', becomes the source point, res for Region II), we have

f r ol ahigP e ) = alvplatyly, (ke (k) f o (kre, (k)

2
aO
rs a] (36)
*a(vy o (v2) (kr,) (kr “/a : 9, (kr v, (kr')+al(vydalv,y)e, (kre) o (kr{}(.QE; .
v 2 1 2 e r
(k) u, (k)
62 ) ) w0
#l3)T()9, (ke o, (kr) f o (ke duy (ke 4T (0))T(u e, (ke )e, (kr) f
1 2, 1 2 1 2 2,
W eyl e
1 V2
where
o, tkr) = BV (ke) + Ry () (kr) .
b, (kr) = H T (kr) + Ry (RS2 (kr).

From the differential equation (9) for the radial functions and linear combinations
as given in (37) we have

r a¢v] 8¢V2
[ o, e, k) < e, () ey ) F )
\)] 2 ( ‘\)) 2 ' 1 '.
a, 2 r's=r r's=r
3% 30 (38)
ao \) \)2
- ——=— [, _(ka, ) =7 - ¢, (kaj) —7r ]
(v]-vz) v2 r'=a° ! r'=a
. for) 22 oy 2
P A T ar
\)] V2 r'=p r'=syp
10
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because ¢v(kr) satisfies (28). Also

r

8 o, 3,
r' "s 2
‘/‘_r"¢ (kr! )W (kr) 2 2) [wvz(krs)w ¢\)1(krs) or' ]
r V172 ri=rg ri=rg
3¢v 0, (39)
2
- —. Ly, (kr) 5 ¢, (kr) —= ]
(v 1'“2) r'=r 1 r'=r
4
L1 oy
dr’ ' vy - 4 1 V2
- W\) (kr )w\) (kr') = 77 [w\) (ka]) T -V, (ka]) T ]
V‘S 2 \)]-\)2) 2 r|=a] 1 r'=a.|
(40)
I" a‘L\)-I aqJ\)2
—T [W (kf‘ ) 5T b, (kY‘S) AT 1.
(v 1'V2) ri=r 1 r'=r
s s
The following integral involves both the wave numbers k and Q; i.e.,
a
2 ~
/drl H(]) R a aH(]\))] (krl) 1 R Bw\)
J o M ey (k) = — 5 [y (kay) —r M (kay) 2
! 2 (v-v3) K r'=a, ! r'=a,
(41)
a H(]) (kr ) awvz )
- —1 [y, (kay) —pr -H(])(ka ) ]+ SAmk
(v1-v3) K r'=a, r'=a, (v1-v3)
42
f d'dr' H(V:)(kw)%z(km
2
N

e L e

RS

R v raietge




and, finally,

P A A a ) aHi])(kr') A
S Ay - S D DL iy
a 1 2 (V]'Vz) 2 r'=a
2 . 2
an 1) (k) (42)
2 ]
ar' .
r =a2
Substituting (38), (39), (40), (41) and (42) into (36) gives
[ dr (1) (2) 2, _ -1 1
(r' r,v)g (ror'svs) = (27 )
4 > S [Ry () <Ry () IRy (v7)-R; (o) T (47-v5)
(1)
3, %,
by (krde, (ke)r Lo, (ke) —2 b, (kr) 5| ]
1 ! 2 r'=r r's=r
(2)
3(1)\) all)v]
ta, (kr)oy (krdrg [u (krg) =t g, (kr) —= ]
2 2 1 e, 1 v
(3) .
b, oy, (kr) aH\()l)(kr')
+ 3, (ke)u (kag)a; [o (kr.) —— -y, (kag) = ;
Vs r vy 'y [\)] s’ Tar ea, vyt H\r)l)(ka]) ar ea
@
(ka ) aH\()”(kr') . v
EMCN -m-—)- 2 Loy, (kap) e -H\():)(kaz) 2 ]
r'=a2 r'=a2
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. (5

v, (ka]) 2 ay,-
*, (kr)¢ (kr ) —Eij—;;;— ZAnk a r'dr' HV] (kr')wvz(kr‘) (43)

1
(6)
by, (kay) [R2<v2)-R1(v2)1£H§:)<ﬁa2)H§1)'(Qaz)-H§:)<£az)H£;)'<£a2>1
*0, (kr)¢ (kr ) —r~yﬁr—— (4i/m)
[Q H(])'(Ea Yo, (ka )-hH(])(Qa Yo ' {ka,)]
V1 vz 2 vy 2 \Z) 27y 2 2

We will show that terms (1) and (2) in (43) represent the "uncoupled" or zeroth order
solution and (6) represents the first order coupling, while the remaining terms;
i.e., {3), (4), and (6) are all of second order. Consider the following

combination of terms from (3) and (5); i.e.,

MER (])(kr ') aHS])(ﬁr')
¢v2(kr) kr ) —(_f—_"_" [azw (kaz) ‘gFT"—*"‘ -a1wv2(ka]) —-g}r———- ]
Y"=52 r'=a]
. wv](ka1) o ay - (44)
= ko 2(kr)¢> ;ETT~———~ [au, (ka H v (kay) - a]wvz(ka])uv] (kay)].
1

We will make use of the following asymptotics

173 (1
e - (517 e

(45)
173 (2)
W2 vz) - (&) Wi (t+ 0
where Ni(]) and H1(2) are A\ry functions with (4) /3

( ) [1- ( u) ] or (v =kat ( ) t) (46)

and the dimensionless "radial wavenumber"

1/3

x=ka/(52) . (47)

13




Using (45), (46) and (47) we find (44) becomes

~ oo /3 (1) (2) » 173 (1) (2)
<k () [ (X )Ry (t,)Wi (t2+xr)](r;;) [Wi (X )#R, (£ W1 (Eq#X )]
, /3 (1) (2) o 1/3 (1)
. [32 (FEE) [wi (t2) + Rz(tz)w1 (tz)] (E;;) Wi (t.I txg ot xD) (48)
2 1/3 (1) (2) 2 1/3 (1)'
-a, (Es;) Wi (X Ry (to)Wi (tyx, )] (E;;) Wi (t; + xp)
with
ka] 1/3
x. =k (ag-r)/ (=)
ka] 1/3
Xy = k (az—a])/(—2~—) s
ka] 1/3
xS = k(a] - rS)/(T) ’
ka, 2/3
XD = ZAH(T)
Now, we see if the radial wavenumber, x , is small, (48) becomes
A 1/3 1/3 1/3 (1) (2)
a2l D (DT (T N (e DRy (e (0],
(49)

(1) (2)
'[w§])(t]+xs)+R2(t1)“§2)(tl+xs)] (Wi (t)+R,(t W1 (t))] .

('
Wi (tl + xD)

which is negligible compared with (1), (2) and (6).

14
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Also from (3) and (5), we find

awv] awvz
(kr)¢v](krs)a1 [w\,z(ka,) 55 -w\)1(ka1) 5T ]

r'=a1 r‘=a1

o
V2

2/3 (1) (2)

- 2ikago, (kr)oy (ko Ry(ty) (Eé;a N (6 W1 (t, + ) - (50)

(2) (1)
- Wi (t])Wi (t2 + xa)]

which is negligible, again compared with (1), (2) and (6). Consider (6), and
the rational function '

(“\();)(ﬁaz)*'él)l(aaz) - H\():)(Eag)H\();)l(;az)]

X (51)
[k 15 haga, (kag)- k K tkag)ey, (kay)]
M (1)" (1) ()"
[Wi (t2+xD)Ni (t]+xD+xa)-w1 (t1+xD+xa)wi (t2+xD)]
O ™ 2) Q) 10k 2

KW (bt )IHE (E )Ry (W ())]-k Wi (tybxp) [T (£))4Rq (E)HT ()]

which is negligible for small radial wavenumber, Xy Note, even if Xp = 0, the

(1) (2)
denominat?r)in (52) is non-zero because it involves the Wronskain Wi (tZ)Wi (tz)-
(1) 2)!
Wi (tz)Wi (t2)=-21/n. Of the terms in (43) remaining, (1) and (2) represent the

uncoupled normal modes and are given by

By, 39,
by, (ko) (ke [o,, (k) ~ |- by, (kr) -
r'=r r's=r
(52)
= (41/7‘)[R](\’2) - Rz(Vz)] wv](krs) ¢’\)](kr)

and

15
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¢v2(kr)wv2(krs)rs [wv](krs) T

= (4i/“) [Rz(v]) = R](V])] ¢v2(kr)wv2(krs) ’

where use of (23) is made. The term involving the coupling between regions (I) and
(IT1) is (5) is given by

v, (ka]) . A
o (kr)o (ke ) — 20nk? rrdr K (ke e (krt) (54)
V2 V] S H(])(Qa ) A ‘1 V2

v] ] 1

Returning to (17), we have the vq- and vz-integrations remaining. These are easily
performed using Cauchy's Theorem; the integrands are analytic except at the simple
poles which are solutions of

8!

"1
R](Vz) = RZ(VZ). (55)

The residues at the simple poles are

(¢ + x) 12 :
. . XpL™1 *D 1 (56)
a](t) - (77/21) (2) (])' (2)! —‘(]) . - _(2)(t+x )]2

(Wi (t)Wi (t+xD)-w1 (t)wi (t+xD)] (Wi 0

with

1/3
Xg = k(a] - ao)/(ka]/Z) (57)

2 2
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The V= and v,-integrations yield the desired result
1 m
E(r) = (-1/32) | ———7% ay (ty) o mlkr)y.m(kr )
rexpli(¢-0.) (kay + 1 (kap/2)'/3 47 ]

ST 2 (Eegm(kripair,) (58)
m

]/3 m)] -

-expli(g-¢g)(ka, + 1 (kay/2) '~ t,

¢tn(kr)¢tT(krS) th(ka1)

2
moAN 1/3 E :z m n 2
m n

[(V]) '(Vz) ] HVT(ka])

cexplika, + (0,-65)t](ka;/2)'3 + ika, + (-0t (kay/2)! /3]

a2 1 H(]); \ k ] i
-kf dr tr?(r)wtg(r)

with

1/3 4/3
} (59)

2 2 ka a
[(]) (V) 1 = 2ka, {k(a]az) + () [t‘?(gf—) t5]

In (58), E(r) is the field normalized by the source intensity, this result is used
for numerical experimentation and has been further normalized as W = [E(r)| (-1/32).
Therefore, W is dimensionless.
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SECTION III
REMARKS

1) The single sums over the modes in (58) represent the field, assuming

(5)’(6). The assumption proceeds by taking the boundary

uncoupled normal modes
conditions to be independent of the coordinate in the direction of propagation, but
the boundary conditions in the normal direction are the same that would be applied
for perfectly stratified media. It is also assumed that eigenfunctions correspond-

ing to a particular normal mode are orthornormal; i.e.,

dr' . -
/ = ok )e (krt) =8 .
a0

Unfortunately, in many theories, it is often very difficult to justify when to
neglect the coupling. The solution given in (58) allows a direct determination of
the effect of coupling. In (58) if the coupling is negligible, the solution suggests
the angular position of the step is unimportant, and one must only remember which
medium he is in; e.g., source in medium (I), observer in medium (II).

2) Cho and Wait(7) gave a derivation for the fields in a stepped model for
a non-uniform duct which employed the use of a non-Hilbert space inner product;
i.e., < ¢n, ¢m > , instead of the usual definition in terms of a compliex-valued
function or ordered pairs with inner product < ¢n,¢; > . The natural metric

1/2
{x-y, x-y}

is a real nonnegative quantity and represents the physical quantity power. Recall-
ing a metric space is complete if every Cauchy sequence is a convergent sequence, d
the usual definition of a Hilbert space is an inner product space which is complete
with respect to its natural metric. The Cho and Wait result can be explained by
the use of "biorthogonal" coordinates(s). Let {vn} be the set of nonzero eigen-
values of the differential operator

9 2

£ = 5% (rs-)+rk
and let {¢n} be the corresponding eigenfunctions. The nonzero eigenvalues of the
adjoint (formal) operation £ are given by {“E} and the corresponding eigenfunctions
will be denoted by {wm}. Now, take for the set {wm}
* *
{wm} = {¢1 ¢y 5 * *}
18




Then, indeed, the innner product will satisfy

< Pty T T Sy

In fact, Cho and Wait's result for < oty > equals our result in (56); i.e.,

< Oty > = a1(t). This yields the interesting conclusion that the Cho-Wait inner
product will equal zero if and only if a](t) equals zero which requires the
existence of a double root: This can occur even in a single section duct. Proof:
Since the denominator of a](t) is a rational function, the only singularities it
can have in the entire complex tplane are poles. A double root suggests degenerate
modes in the two regions; i.e., the spatial distribution of sources across the
aperture plane =0, has the same wavelength as the normal modes being driven and

a resonance occurs. The integral formulation used here in terms of the Green's
function approach completely sidesteps the issue of what the normalized “"eigen-
functions” should be in the biorthonormal coordinate approach. It may be that since
the residue in the Green's function approach equals the inner product in the bio-

rthornormal case and because the Hi])(kr) are dense in our Hilbert space, any function
m

can be approximated to within >0 by =2

Hé])(kr). The problem comes in finding out
m

how to express the am's. This is probably an example of a problem where the solution

can be found by a Green's function method but only a generalization of the notion of

eigenfunctions permit a solution in terms of the latter. The other point is that the

residues come out naturally in the Green's function method.

3) The double sum in (58) depends upon the location of the vertical step,
¢0, and represents the coupling from mode m to mode rn. The magnitude of this term
depends, on the electrical step size, k(a2—a]), as seen in (58) and (59).

19
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SECTION IV
EXAMPLE

The numerical results for the four "height-gain" curves in Figure 3 correspond
to the following choice of parameters:

a, = 6378 km

a] = 6379 km

a, = 6379000, 6379010, 6379020, 6379030 m

re = 6379 km

f = 100 MHz

An = 25 N-units

a,(¢,-0.) ~ 100 km

0'"s = e

§ =0.3 - i4x10"° (o = .001 Seimens/m, €, = 10)

From Figure 3 it appears that a step size of about 20m causes significant change in
the height-gain pattern. We will refer to this as the "resonant" step-size. This
would correspond to a radial wave number from (47) of about 0.463 radians (i.e.,
about ~/8). The second limiting criteria for our solution in (58) is the number of
modes required for convergence of the series. For the example in Figure 3, 10 modes
gave two significant figures. The convergence of the series is dominated by the
exponential terms in the series for small m and by the asymptotic decay of the
residues for large m; i.e.,

3/2

) ~ exp(- 4/3 t3/2)/a £

a1(tm
where for t, < Xo» the imaginary part of t becomes small. In Figure 4, the effect
of the number modes is shown for a 10 km separation between source and step and step
and observer. At this distance 30 modes are required for convergence.

In Figures 5 and 6, the choice of the parameters is the same as in Figure 3
except the frequency is 300 and 60 MHz respectively. Figure 7 is the same as
Figure 4 except the refractive index contrast is 50 N-units. The limiting step size
for this case is about 10 m. The resonant step size for 300 MHz is about 5 m for
An = 25. In Figures 5, 6 and 7, 10 modes provided adequate convergence of the sums.
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SECTION V
CONCLUSIONS

A Green's function approach is used to examine the effect of varying the step-
height in a tropospheric duct with a single step discontinuity. If the electrical
height of the step is less than the "radial" separation,

k(a, - a])/(ka/2)1/3

the vertical distribution of the field strength agrees with the fields in a duct

. with no discontinuity. This agrees with a result obtained by Wait and Spies for

an ionospheric duct(g). The Tocation of the step in relation to the source and

observer determines the number of modes required for convergence.

G -




(1)

(8)

(9)

SECTION VI
REFERENCES

A. Nagl, H. Uberall, G. L. Zarur, and A. J. Haug, Adiabatic mode theory of
underwater sound propagation in a range dependent environment, J.A.S.A.,

Vol. 63, p. 739, (1978).

E. Bahar, Propagation of VLF radio waves in a model earth-ionosphere waveguide
of arbitrary height and finite surface impedance boundary: Theory and experi-
ment, Radio Science, 1, (New Series), Vol. 8, pp. 925-938, (1966).

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall,
Inc., Englewood C1iffs, New Jersey, pp. 306-314, (1973).

8. H. Ott, Roots to the model equation for EM wave propagation in a tropospheric
duct, Jour. math. Physics, Vol. 21, pp. 1256-1266, No. 5, May, (1980).

J. B. Keller, Progress and prospects in the theory of linear wave propagation,
SIAM Review, April, Vol. 21, No. 2, pp. 234-235 (discussion of "Propagation

and normal modees"), (1979).

Allan D. Pierce, Extension of the method of normal modes to sound propagation

in an almost-stratified medium, Jour. of the Acoustical Society of America,

Vol. 37, No. 1, pp. 19-27, Jan., (1965).

S. H. Cho and J. R. Wait, FM wave propagation in a laterally non-uniform
troposphere, EM Report #1, CIRES, Boulder, Colorado, June, (1977). A summarized
version is given in S.H. Cho and J.R. Wait, Analysis of Microwave Ducting in

an Inhomogeneous Troposphere, Pure and Applied Geophysics, Vol. 116, pp. 1118-
1142, (1978).

I. Stakgold, Boundary Value Problems of Mathematical Physics, Vol. 1, The
MacMillan Company, London, p. 257, (1964).

J. R. Wait and K. P. Spies, On the calculation of mode conversion at a graded
height change in the earth-ionosphere waveguide at VLF, Radio Science,

Vol. 3 (New Series), No. 8, pp. 787-791, August, (1968).

27

#U.S.Government Printing Office: 1980 — 657-004/134

‘
i SRR S A

m’mww P K '"”"“'V" B




